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ABSTRACT

Planning and managing commercial airplane routes to avoid thunderstorms requires very skillful and

frequently updated 0–8-h forecasts of convection. The National Oceanic and Atmospheric Administration’s

High-Resolution Rapid Refresh (HRRR) model is well suited for this purpose, being initialized hourly and

providing explicit forecasts of convection out to 15 h. However, because of difficulties with depicting con-

vection at the time of model initialization and shortly thereafter (i.e., during model spinup), relatively simple

extrapolation techniques, on average, perform better than the HRRR at 0–2-h lead times. Thus, recently

developed nowcasting techniques blend extrapolation-based forecasts with numerical weather prediction

(NWP)-based forecasts, heavily weighting the extrapolation forecasts at 0–2-h lead times and transitioning

emphasis to the NWP-based forecasts at the later lead times. In this study, a new approach to applying

different weights to blend extrapolation andmodel forecasts based on intensities and forecast times is applied

and tested. An image-processing method of morphing between extrapolation and model forecasts to create

nowcasts is described and the skill is compared to extrapolation forecasts and forecasts from the HRRR. The

new approach is called salient cross dissolve (Sal CD), which is compared to a commonly used method called

linear cross dissolve (Lin CD). Examinations of forecasts and observations of the maximum altitude of echo-

top heights $18 dBZ and measurement of forecast skill using neighborhood-based methods shows that Sal

CD significantly improves upon Lin CD, as well as the HRRR at 2–5-h lead times.

1. Introduction

Federal Aviation Administration (FAA) Operations

Network (OPSNET) data show that more than 70% of

the National Airspace System (NAS) reportable delays

are contributed by convective weather (Sheth et al.

2013). Air traffic is routed around anticipated locations

of convective weather systems, forcing aircraft to take

large deviations. Accurate nowcasts are, therefore,

critical to reducing the number of such delays.While the

strategic time frame for flight operations is only 8 h,

longer-term flight planning requires up to 12-h forecasts

of variables containing information on convection such

as echo-top heights and vertically integrated liquid

(VIL) (Robinson et al. 2008; Pinto et al. 2010).

The focus of recent research in providing support for

flight planning has been on developing improved

weather products and making better use of probabilistic

data, which benefits various participants in air traffic
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management (Fahey et al. 2006). Other research has

focused on operational concepts for managing strategic

traffic flow, including examination of how improved

weather data can aid traffic management initiatives ef-

ficiently (Song et al. 2008).

For short-term prediction of convection for route-

planning applications, frequently updating high-resolution

forecasts of convection are needed (i.e., nowcasts). To

address this need, since about the early 1990s, various

nowcasting techniques have been developed that rely on

extrapolation (EXT) of observed convection as depicted

by radar-derived fields (Dixon andWiener 1993; Li et al.

1995; Germann and Zawadzki 2002, 2004; Mandapaka

et al. 2012). Although oftentimes quite skillful at 1–2-h

lead times, the extrapolation-based methods suffer

from the obvious shortcoming that they are not able to

depict rapidly changing conditions associated with

processes such as convection initiation, dissipation, and

changing intensities and movements. For changing

conditions, a rapidly updated numerical weather pre-

diction (NWP) model with high enough resolution to

provide explicit forecasts of convection is necessary

(Stratman et al. 2013).

To test NWP model forecasts for nowcasting ap-

plications, several recent studies have compared the

forecast skill of NWP models to extrapolation-based

methods at very short lead times. For example,Mandapaka

et al. (2012) compared precipitation forecasts from

an algorithm known as the McGill Algorithm for Pre-

cipitation Nowcasting by Lagrangian Extrapolation

(MAPLE; Germann and Zawadzki 2002) to high-

resolution NWP-based forecasts from the Consortium

for Small-scale Modeling (COSMO) model (COSMO2;

http://cosmo-model.org). They found that on average

the MAPLE forecasts had higher skill during the first

2.5 h of the forecast, after which the COSMO2 forecasts

performed better. Similarly, examining precipitation

forecasts, Lin et al. (2005) found that extrapolation-

based predictions were more skillful than four different

NWP models, on average, up to about 6-h lead times.

The lower skill during the first few hours of the NWP-

based predictions occurred because of difficulties in

depicting small-scale convective features in their model

initial conditions, and then correctly evolving these

features (i.e., the model ‘‘spinup’’ problem). The cross-

over time (i.e., when the NWP-based forecasts become

better) is earlier in the Germann and Zawadzki (2002)

study because they used a more advanced NWP system

with a more sophisticated data assimilation scheme that

assimilated radar-derived rainfall fields. In theory, as

sophisticated high-resolution data assimilation methods

continue to improve, NWP-based forecasts may even-

tually become more skillful than extrapolation-based

methods at all lead times. However, while the extrapo-

lation methods remain more skillful at short lead times,

seamless 0–8-h predictions may be obtained by blending

extrapolation with NWP-based forecasts, with the ex-

trapolation forecasts heavily weighted during the first

few hours and the heavier weights transitioning to the

NWP-based forecasts at later lead times.

To address the nowcasting problem using this blend-

ing approach, the FAA collaborated with the Massa-

chusetts Institute of Technology’s Lincoln Laboratory

(MIT LL), the National Center for Atmospheric Re-

search’s (NCAR) Research Applications Laboratory

(RAL), and the National Oceanic and Atmospheric

Administration/Earth Systems Research Laboratory/

Global Systems Division (NOAA/ESRL/GSD) to

develop a system known as Consolidated Storm Pre-

diction for Aviation (CoSPA; Wolfson et al. 2008;

Dupree et al. 2009). CoSPA was aimed at providing

information by blending extrapolation-based forecasts

and NWP-based forecasts for lead times up to 8 h. The

High-Resolution Rapid Refresh (HRRR; http://ruc.

noaa.gov/hrrr/) model, an hourly updated 3-km grid

spacing convection-permitting modeling system, de-

veloped by NOAA/ESRL/GSD that became opera-

tional on 30 September 2014, was utilized as the model

forecast. The blending method of CoSPA consists of

three steps: 1) calibration of the HRRR data to remove

intensity biases, 2) application of a spatial correction to

align the HRRR fields with observations, and 3)

weighted averaging of the extrapolation and HRRR

fields (Pinto et al. 2010).

The method of obtaining weighted averages for

blending in CoSPA is based on applying time-varying

weights to the extrapolation and HRRR fields. The ex-

trapolation has more weight (close to 1) at the shorter

lead times and decreases gradually at the longer lead

times (approaching 0). The calibration and the spatial

offsets are applied based on the most up-to-date radar

mosaic. Pinto et al. (2010) provide additional details on

the blending procedure used in CoSPA, as well as veri-

fication results for a prototype version of CoSPA during

the summers of 2008 and 2009.

Comparing to extrapolation, as well as raw and cali-

brated HRRR forecasts, Pinto et al. (2010) find that the

forecast skill of CoSPA, asmeasured by the critical success

index (CSI), follows that of extrapolation during the first

2–3h and then converges toward the skill of the HRRR

during the last 6–8h. During forecast hours 3–5, which was

when the model skill began to exceed that of extrapola-

tion, the margin by which the skill of CoSPA forecasts

exceeded the skill of the next most skillful forecast was

highest. Similar results from application of CoSPA during

July 2012 can be found in Sun et al. (2014).
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Although the blending method used in CoSPA shows

promising results, biases near 0.6 within the 3–4-h

forecast period indicate a systematic underprediction

in the areal coverage of convection during this time. This

systematic underprediction can likely be partially ex-

plained by the fact that weights are close to 0.5 for both

extrapolation and HRRR fields during this time. Thus,

in the case of slight displacements between areas of

forecast convection in the HRRR and extrapolation

fields after spatial correction, the fields would be re-

duced by half, giving lower overall values in two dif-

ferent locations.

The purpose of this study is to address this un-

derestimation problem using a new blending approach

that considers intensity in addition to forecast lead time

in the computation of weights. The new blending ap-

proach is compared to one in which weights are only

dependent on forecast time. Although this time-

weighted-only blending approach is less sophisticated

than that used in CoSPA (e.g., no attempts are made to

correct for the intensity biases of the HRRR forecasts),

the comparisons with our newly developed blending

approach should serve as a useful proof of concept for

application in more advanced nowcasting systems.

The technique to apply different weights based on

time and intensities is described and its results are

compared to that of a time-weighted-only averaging in

section 2 along with a description of the data and our

methodology. The results are discussed in section 3.

Finally, summary and ideas for future work are pre-

sented in section 4.

2. Data and methodology

a. Dataset

In this study, forecasts and observations of 18-dBZ

echo-top heights are examined, which are defined as the

maximum altitude at which reflectivity exceeds 18 dBZ.

The observed echo-top heights are estimated from the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

data using the highest elevation angle that detects re-

flectivity over 18 dBZ (Lakshmanan et al. 2013). Echo-

top heights were chosen for examination because they

are one of the parameters that determine the availability

of a flight route in recently developed convective

weather avoidance models (Matthews and DeLaura

2010; Sheth et al. 2013). For verification purposes, 18-dBZ

echo-top heights computed from theWSR-88D network

covering the contiguous United States (CONUS) are

used as truth. Four different sets of 8-h forecasts are

evaluated, which are all initialized at 1800 UTC. This

particular initialization time was chosen because it

is a few hours before the typical maximum in the diurnal

cycle of convection and, thus, precedes by a few hours

the largest potential impacts on flight routing. Forecasts

on 24 days during the period from 15 May to 13 June

2013 were examined (the dates 20, 28, and 29 May and 4

and 7 June were excluded because of missing data). The

four forecasts consisted of 1) the HRRR, 2) extrapo-

lated observations, 3) a blending of extrapolated ob-

servations and the HRRR [linear cross dissolve (Lin

CD)], and 4) another blending of extrapolated obser-

vations and the HRRR [salient cross dissolve (Sal CD)].

Details on the four forecasts are discussed in the fol-

lowing sections.

b. HRRR

The HRRR is a convection-allowing model, which

generates convection without convective parameteriza-

tion, covering the CONUS with 3-km grid spacing and

nested within the parent model domain of the 13-km

grid spacing Rapid Refresh (RAP; Brown et al. 2011;

Weygandt et al. 2011) model. The RAP provides initial

and boundary conditions and assimilates radar re-

flectivity observations through a diabatic digital filter

initialization (Huang and Lynch 1993). The HRRR is

based on the Advanced Research version of the

Weather Research and Forecasting (WRF) Model

(ARW; Skamarock et al. 2008) with the following WRF

physics options: 1) the Goddard shortwave radiation

scheme (Chou and Suarez 1994), 2) the Rapid Radia-

tive Transfer Model longwave radiation scheme

(Mlawer et al. 1997), 3) the RUC Smirnova land surface

model (Smirnova et al. 1997), 4) the Mellor–Yamada–

Nakanishi–Niino (MYNN) boundary layer parame-

terization (Nakanishi and Niino 2004), and 5)

the Thompson mixed-phase microphysics scheme

(Thompson et al. 2008).

The RAP and HRRR assimilate data hourly using the

Gridpoint Statistical Interpolation analysis system

(GSI). The HRRR utilizes 3-km data assimilation to

include detailed observational information using GSI.

During a preforecast hour, observed radar reflectivities

replace latent heating fields for the HRRR at 15-min

intervals. Moreover, at the beginning of the forecast, a

3-km nonvariational cloud analysis and hydrometeor

analysis from radar reflectivities are used to obtain ad-

ditional information about rain and snow mixing ratios.

c. Extrapolated observations

The high spatial and temporal resolution of weather

radar data has enabled the development of several

nowcasting techniques based on extrapolation methods

(Mandapaka et al. 2012). In these methods, the move-

ment of storm cells is typically estimated by matching
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radar echoes between two successive radar images. A

storm cell is typically defined as a region of reflectivity

that exceeds a threshold (usually 35 or 40dBZ). Exam-

ples of tracking and extrapolation algorithms found in the

literature include Continuity of Tracking Radar Echoes

by Correlation vectors (COTREC; Li et al. 1995), which

used variational methods (Sasaki 1958, 1970) to skillfully

predict the movement of storm cells 20min in advance.

The Thunderstorm Identification, Tracking, Analysis,

and Nowcasting (TITAN; Dixon and Wiener 1993) sys-

temwas created to optimallymatch storm cells successive

radar images using a linear programming optimization

approach called the Hungarian method. MAPLE

(Germann and Zawadzki 2002, 2004) applies variational

approaches to provide improved extrapolation.

For extrapolation forecasts, we used the segmotion

algorithm that is implemented in the Warning Decision

Support System–Integrated Information (WDSS-II;

Lakshmanan et al. 2006). In this technique, thunder-

storms are identified at different scales using the ex-

tended watershed approach (Lakshmanan et al. 2009).

The image is flooded starting from the global maximum.

The flooding level is slowly decreased so that flooding

can proceed at lower and lower levels and the entire area

covered by water flowing from a single maximum to a

predetermined size (this size varies by scale) forms a

thunderstorm. Storms identified in consecutive images

are associated based on a greedy optimization algorithm

(Lakshmanan and Smith 2010) that tries to optimize the

match based on projected storm location and a cost

function based on continuity of themaximum value. The

motion vector derived from storm associations is in-

terpolated onto the full grid using an inverse distance

weighting scheme (Lakshmanan et al. 2003). These

motion vectors, one for each scale, are then matched to

the size of the objects being extrapolated and the time

period of extrapolation and used to extrapolate the

current echo-top grid into future time steps.

d. Image morphing

In the image-processing literature, creating inter-

mediate images to provide a smooth transition between a

pair of images is called morphing. Morphing consists of

three image-processing steps: warping, cross dissolving,

and unwarping. Because the same entities in the two

images may be slightly displaced, the process of warping

attempts to align the objects in the two fields. This is

typically done through coordinate transformation by

choosing the coordinate transformation at which a cost

function is minimized. The cost function balances two

concerns: that the warping is as small as possiblewhile the

difference between the warped version of the first image

and the second image is also as small as possible.

The second image-processing step (cross dissolving) is

intended to blend the warped version of the first image

with the second image with different weights chosen to

obtain a series of intermediate images. For example, an

intermediate image that is some fraction w of the way

(w, 1) between the two images may be obtained by

assigning a weight w to each pixel in the warped version of

the first image and a weight (12w) to the corresponding

pixel in the second image. Such a linearweighting scheme is

not the only possible choice. In this paper, wewill employ a

saliency-based weighting scheme (discussed later).

The third step is to unwarp the blended image to add

back the alignment difference between the pair of im-

ages being morphed. This is achieved by applying a

weighted inverse of the warping function to the blended

image. Thus, if the coordinate transform to warp the first

image to the second was f (x, y), the transformation

applied to the blended image is (12w)f21(x, y), where

w is the weight of the first image in the blended image.

With an appropriately chosen warping function, it is

possible to simplify the process above into two steps:

1) warp the first image bywf (x, y) and the second image

by (12w)f21(x, y) and 2) cross dissolve the two warped

images to obtain the morphed image.

1) LINEAR CROSS DISSOLVE

Linear cross dissolve is a commonly employed

blending method that computes the weighted average of

two aligned images pixel by pixel. For example, if one

tries to combine two images, I1 (the extrapolation) and

I2 (the model forecast), the cross dissolve of the images

C(x, y) can be represented as

C(x, y)5wI
1
(x, y)1 (12w)I

2
(x, y) , (1)

where I1(x, y) is the intensity of the pixel (x, y) in the

first image and I2(x, y) is used for the second image.

Assuming that there are six time steps (0, 1, 2, 3, 4,

and 5h) between I1 and I2, at 0 h, the C(x, y) is the

same as I1 since w5 1 and 12w5 0. At 3 h,

C(x, y)5 0:6[I1(x, y)]1 0:4[I2(x, y)] gives slightly more

weight to I1. For morphing extrapolation and model

fields,w for a linear cross dissolve is shown in Fig. 1a and

12w in Fig. 1b. It should be noted that blending weights

are independent of the intensities I1(x, y) and I2(x, y).

For linear cross dissolve, the same weights are applied

to images at a certain fraction of time for all intensities.

Essentially, features from I1 fade out as features from I2
fade in. Features present in both images fade from their

presentation as in I1 to their presentation as in I2.

Idealized examples of linear cross dissolve for a line of

discrete storm cells are shown in Fig. 2. There are six

time steps (0, 1, 2, 3, 4, and 5h) of three convective cells
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in the illustration. The cells are moving to the east at a

constant speed as shown in Figs. 2a–f. The top cell has

not developed at 0 h but develops at 1 h and increases in

intensity until 5 h. The center cell decreases in intensity

throughout the idealized forecast period while the bot-

tom cell maintains constant intensity. Extrapolation

captures only the center and bottom cells from the ob-

servation at 0 h and extrapolates them to the east with-

out changing the intensities. The bottom cell is well

captured by extrapolation because it is unchanging in

time. However, the change in intensity of the center cell

is not captured by the extrapolation. On the other hand,

it is not possible to extrapolate the top cell since it was

not present in the observations at 0 h. In the illustration,

it is assumed that the model forecast simulates only the

top and the bottom cells, and with lower intensities.

The blend of the extrapolation and model forecast

using Lin CD is shown in Figs. 2s–x. Extrapolated im-

ages are weighted higher than the model forecasts close

to the beginning of the forecast time and the opposite

weighting is employed approaching the end of the

forecast time. Lin CD captures all three cells even as the

extrapolation and model forecast depict only two cells

each. However, the top and center cells tend to have

weaker intensities compared to that of the observation.

For example at 2 h (w5 0:6 and 12w5 0:4) only the

center cell is present in the extrapolated image, and,

therefore, the intensity in Lin CD is decreased to 60%

of the original values. Similarly, the top cell in Lin CD

at 2 h obtains 40% of the model forecast intensity at

the same time step. As exemplified above, Lin CD is

simple and computationally efficient. However, Lin CD

FIG. 1. (a) Lin CDweights for EXT.Weights start at 1 regardless of intensity at 0 h and steadily decrease to 0 atmax

forecast length. (b) Lin CDweights for HRRR.Weights start at 0 regardless of intensity at 0 h and steadily increase to

1 at max forecast length. (c) Sal CD weights for EXT. The weight of high-intensity pixels (ranked saliency, r5 y axis,

;1) remains high throughout the time period whereas low-intensity pixels are dampened more quickly. (d) Sal CD

weights for HRRR. The high-intensity pixels (r 5 ;0) remain high throughout the time period.
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dampens the amplitude of features by applying constant

weights.

2) SALIENT CROSS DISSOLVE

A method of maintaining the features from multiple

images considering the saliency (or importance) of dif-

ferent intensities was developed and applied to image

blending (Grundland et al. 2006). The goal of that study

was to preserve color and contrast while blending mul-

tiple images with different resolutions. Salience contrast

and color in that study refer to the informative aspects of

the image as far as human vision is concerned. In this

study, we define salience as the locations of strong cells

(in terms of normalized intensities). Consequently, the

composite image using saliency-based cross dissolve is

defined using the following equation from Grundland

et al. (2006):

S(x, y)5w
s
[w, r(x, y)]I

1
(x, y)

1 f12w
s
[12w, r(x, y)]gI

2
(x, y) , (2)

where S is composite image of I1 and I2, and ws is a two-

dimensional function of weight and the ranked salience

r(x, y), where ws is calculated using

w
s
(w, r)5

1

2

2
64 wr

wr1 (12w)(12 r)

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1w2

p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 r)2 1 (12w)2

q

3
75 . (3)

Compared to the linear weights of Figs. 1a and 1b, ws

allows the blended product to preserve pixel intensities

FIG. 2. Illustration of the different forecast methods for an idealized sequence of forecasts and observations at a line of discrete storm

cells. (a)–(f) Observed 18-dBZ echo-top heights at forecast hours 0–6. (g)–(l) As in (a)–(f), but for idealized forecasts fromEXT. (m)–(r) As

in (a)–(f), but for idealized forecasts fromHRRR. (s)–(x)As in (a)–(f), but for idealized forecasts fromLinCD. (y)–(dd)As in (a)–(f), but for

idealized forecasts from Sal CD.
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with time if they are strong enough based on the r value

(see Figs. 1c,d). Using Grundland et al. (2006), r(x, y) is

calculated as

r(x, y)5F[N
1
(x, y)2N

2
(x, y)] , (4)

where F(x) is a cumulative density function (i:e:,

FfMin [N1(x,y)2N2(x,y) ]g50 andFfMax[N1(x,y)2
N2(x,y)]g51) and Nn(x,y) is the normalized intensity

of the image, Nn(x,y)5Nn(x,y)/Max[Nn(x,y)], where

n is the number of images (n51 and 2 in this study).

If the strongest cell is only in I1(x, y) and not in I2(x, y)

at a location (x, y), then F[N1(x, y)2N2(x, y)] is close

to 1 because N1(x, y) is close to 1 and N2(x, y) is close

to 0. In contrast, if the strongest cell is only in I2(x, y),

then F[N1(x, y)2N2(x, y)] is close to 0 because

N1(x, y)2N2(x, y) is close to 21 at the location (x, y).

It should be noted that r(x, y) is not the intensity itself.

We use r(x, y) to show how close the pixel is to the

maximum intensity difference of N1(x, y)2N2(x, y)

[i:e:, r(x, y)5 1] or the minimum intensity difference of

N1(x, y)2N2(x, y) [i:e:, r(x, y)5 0].

The composite image S(x, y) of the extrapolation

andmodel forecasts using Sal CD is shown in Figs. 2y–dd.

Sal CD simulates three cells better than Lin CD

especially at 2 (w5 0:6 and 12w5 0:4) and 3h

(w5 0:4 and 12w5 0:6) because the higher intensities

in the observations are retained. For example at 2h, the

center cell has high r close to 1, where ws would be close

to 0.9 (the point where w5 0:6 and r5 1 in Fig. 1c) and

the bottom cell has low r close to 0, where 12ws would

be close to 0.9 (the point where 12w5 0:4 and r5 0 in

Fig. 1d). Thus, both the middle and bottom cells keep

high intensities in Sal CD. Additionally, the center cell is

shown in Sal CD at 5h while it is not shown in Lin CD at

5h. It is possible to obtain the center cell even when the

weight for I1 is zero at 5 h because ws can be 0.5 if the

intensity is close to 1.

e. Statistical evaluation

We employed two methods to evaluate the fore-

casts over the 24 days that data were available. The

first evaluation method is the neighborhood (NE)

method with a radius of 20 km. Deep moist convec-

tion is defined as 18-dBZ echo-top heights $9 km

(’30 000 ft). The lowest echo-top height considered

dangerous for an airplane is typically 25 000 ft

(Matthews and DeLaura 2010). However, commer-

cial airplanes usually fly at 30 000–40 000 ft, which

was why 9 km was chosen as the threshold for con-

vection in this study. Utilizing the neighborhood

FIG. 3. (a) Schematic of the NE method. Filled green dots show locations of observed 18-dBZ echo-top heights

exceeding 9 km. The green circles of 20-km radius (from filled green dots) determine hits if locations from 18-dBZ

echo-top heights exceed 9 km based on forecasts (EXT, HRRR, Lin CD, and Sal CD). These are the filled red dots

inside the green circles. In contrast, unfilled dots depict missing locations either in observations (green) or forecasts

(red). Dotted circles of 20-km radius from unfilled green and red dots are ranges where there should be locations if

the 18-dBZ echo-top height exceeding 9 km either from observation or forecasts are to be positively scored.

(b) Schematic of the route-based segments method. The circles are the same as those in the NE method, but only

locations inside the route segments (rectangular regions in the black contours with a width of 20 km) estimated using

two waypoints (filled black dots) are evaluated. If there are no locations with 18-dBZ echo-top heights exceeding

9 km inside the route segments, the segment is opened as indicated by the blue line for the correct null (open).
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approach, a hit is defined when forecast convection is

located within 20 km of observed convection (solid

green circles in Fig. 3a). A miss is where there is no

forecast convection within 20 km of observed con-

vection. A false alarm is defined as a forecast for

convection but no observed convection within 20 km

(solid red circles in Fig. 3a). Finally, a correct null is

when convection is neither forecast nor observed

within 20 km (see Fig. 3a). This methodology for

computing neighborhood-based contingency table

elements follows that of Clark et al. (2010).

The second evaluation method is the route-based seg-

ments (RO-seg) method. Routes are obtained from a list of

26606preferable routes in thedatabaseofNationalAirspace

System Resources (NASR; https://nfdc.faa.gov/xwiki/bin/

view/NFDC/561Day1NASR1Subscription). Each

route is an ordered set of waypoints (37 736 points in

CONUS) from the departure airport to the arrival air-

port. Segments consist of two waypoints of which the

average length is 439.65 km with a standard deviation of

489.65 km. There are 6981 segments in preferred routes

when overlapped segments are excluded and they are

used as route-based segments. Based on the guidelines

for horizontal spacing from the FAA, airplanes should

be at least 3–5 nautical miles (n mi; 1n mi 5 1.852km)

apart depending on the altitude in order to avoid wake

turbulence (Alix et al. 2005). In this study, a 10n mi wide

(5n mi from the airplane) jetway is considered. Taking

the width of the jetway into account, if there is a con-

vective pixel (18-dBZ echo-top height over 9km) closer

than 10km (to the line linking two waypoints), then the

segment in the route is determined to be closed.With this

method, a hit is defined as both routes in the model

forecast and observation being closed at the same seg-

ment within 20km. A miss is the case where there is a

convective pixel in the closed segment in the route in an

observation but there is no convective pixel within 20km.

A false alarm is defined as a convective pixel from the route

in the model forecasts that is in the closed segment but no

convective pixel from an observation within 20km. A cor-

rect null is the case when there are open segments in routes

in the model forecasts and the observation (see Fig. 3b).

A histogram of route segment lengths is presented in

Fig. 4b. Most of the lengths are shorter than 500km

FIG. 4. (a) Route-based segments (20% of 6981; otherwise, they are clustered, making it hard to show the seg-

ments) in the CONUS within the area of WSR-88D coverage (estimated as a 460-km radius from the locations of

the WSR-88Ds). (b) Histogram of normalized occurrence of the lengths of the segments. (c) Normalized con-

centration of route-based segments. (d) Locations of dense routes represented as red dots (normalized distribution

$0.5).
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(Fig. 4b). The route segments are interpolated onto a

two-dimensional array and counted to obtain numbers of

overlaid segments in each pixel and normalized (Fig. 4c).

Dense routes are defined as the normalized number of

overlaid segments $0.5 (Fig. 4d). The routes are not

distributed uniformly across the CONUS, as shown in

Figs. 4c and 4d. The routes are denser in the northeast and

there are more east–west-oriented routes than north–

south paths. To illustrate the RO-seg method for a spe-

cific case, open route segments are depicted as brown

lines in Fig. 5. Compared to the NE method, the RO-seg

method is advantageous for aviation applications because

it only considers areas within flight routes.

Contingency tables (Wilks 2011) of neighborhood and

RO-seg methods are constructed from the cumulative

hits a, misses b, false alarms c, and correct rejections

d at each forecast hour from all 24 cases. From the

contingency tables, the probability of detection (POD),

false alarm ratio (FAR), bias, and equitable threat score

(ETS) are calculated using the equations below:

POD5
a

a1 b
, (5)

FAR5
c

a1 c
, (6)

bias5
a1 c

a1 b
, and (7)

ETS5
a2 c

h

a1 b1 c2 c
h

, (8)

where ch is the number of hits expected by chance

and is calculated as ch 5 (a1b)(a1 c)/a1 b1 c1 d. Bias

FIG. 5. (a) Waypoints (37 736 points) in the CONUS are shown as black dots. The red contour shows the area of

WSR-88D coverage. (b) Open routes are shown as brown lines. The route segments are closed if an observed 18-dBZ

echo-top height exceeded 9 km (yellow-filled contours; data are from 2200UTC 8 Jun 2013) within 10 km (or half the

width) of the route. Note that only 20%of opened route segments are represented. (c)As in (b), but for 18-dBZ echo-

top heights exceeding 9 km based on EXT (black-filled contours). (d) As in (b), but for 18-dBZ echo-top heights

exceeding 9 kmbased onHRRR (blue-filled contours). (e)As in (b), but for 18-dBZ echo-top heights exceeding 9 km

based on Lin CD (green-filled contours). (f) As in (b), but for 18-dBZ echo-top heights exceeding 9 km based on Sal

CD (red-filled contours).
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indicates whether the forecast under- (,1) or over-

estimates (.1) areal coverage with a perfect score of 1.

The ETS measures the portion of observed and/or

forecast events that were correctly predicted and is

adjusted for hits associated with random chance. The

ETS has a range of from 21/3 to 1 with a perfect score

of 1 and assigns negative values for an unskilled fore-

cast. Previous studies (e.g., Hamill 1999) point out that

comparisons of ETS from competing forecasts may

be misleading if their biases are different. Thus, in

some cases it is important to apply a bias adjustment

to equalize the biases of the competing systems and

obtain a more equitable comparison. Herein, a bias

adjustment is applied to the results presented in

section 3.

f. Determination of statistical significance

The resampling methodology described by Hamill

(1999) is applied to determine whether differences in

ETS between the Sal CD forecasts and the other sets of

forecasts are statistically significant. For each set of

comparisons at each forecast hour, resampling was re-

peated 10 000 times. For application to this study, the

Hamill (1999) method involves computing a test statistic

using the difference in ETS between Sal CD and the

forecast to which it is compared. Then, a distribution of

FIG. 6. Examples of echo-top heights (a)–(d) observed and forecasted by (e)–(h) EXT, (i)–(l) HRRR, (m)–(p) Lin CD, and (q)–(t) Sal CD

at selected forecast times of 2, 4, 6, and 8 h using the data on 8 Jun 2013.
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resampled test statistics is created by randomly choosing

the Sal CD or other forecast for each case and then

summing the contingency table elements over all cases.

The location of the test statistic with the distribution of

the resampled test statistics determines whether the

differences are statistically significant.

3. Results

a. Example case 1

To illustrate qualitatively the typical performance

characteristics of the various forecasting methods, a

representative case with forecasts initialized at 1800UTC

8 June 2013 is presented in Fig. 6. The synoptic weather

regime associated with this case was characterized by

an amplifying midtropospheric short-wave trough that

moved southeastward from northeastern Wyoming to

south-central Kansas during the period 1200–0000 UTC

8 June. Ahead of this trough at 1900 UTC, a cold front

stretched from south-central Nebraska through western

Kansas. As this cold front moved south and east into an

increasingly unstable air mass, storms began to initiate

at;2000 UTC along the front. By 2100 UTC the storms

had congealed into a line, which expanded while moving

south and east. At 0200 UTC, the last forecast hour

considered, a broken line of storms stretched from

southwestern Iowa, through eastern Kansas, into

FIG. 7. As in Fig. 6, but for the data on 30 May 2013.

OCTOBER 2015 HWANG ET AL . 1211

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:16 PM UTC



northwestern Oklahoma, and to the Texas Panhandle.

The storms at the southern end of the line in the Texas

Panhandle were the most intense.

The hourly forecasts and corresponding observations

of 18-dBZ echo-top heights for this case are shown in

Fig. 6. According to the observations, a strong squall line

with high echo-top heights developed in central Kansas

and moved to the east. The extrapolation captures the

movements of cells present at the starting time properly,

but does not show the development of this strong storm

cell. HRRR depicts the strong storm cell throughout the

time clearly after 3 h. Lin CD captures the features from

EXT and HRRR; however, the intensities are under-

estimated compared to observations. Sal CD shows the

best results compared to earlier times of HRRR and

later times of EXT and all of Lin CD. Sal CD captures

the features from EXT and HRRR by showing the de-

velopment and the movement of the center cell suc-

cessfully. Compared to the results of Lin CD, Sal CD

shows better results by keeping the intensities from

HRRR and adding more information at 8 h.

b. Example case 2

To illustrate another representative case, forecasts

initialized at 1800 UTC 30 May 2013 are presented in

Fig. 7. In this case, the synoptic-scale forcing was char-

acterized by a cutoff low in the midtroposphere situated

in northeastern Wyoming and an attendant negatively

tilted trough moving northeast across the southern

plains of Kansas, Oklahoma, and Texas into Missouri

and Arkansas. Sufficient moisture and vertical wind

shear were present to support severe weather and or-

ganized deep moist convection. At the surface, a cold

front stretched from western South Dakota through

western Nebraska, Kansas, and north of New Mexico

ahead of the trough at 0600 UTC, and moved slowly to

the east. As this cold front stretched farther south and

east into an increasingly unstable air mass, storms be-

gan to initiate at about 0800 UTC along the front. By

1600 UTC the storms had congealed into a line, which

expanded while moving north and east. At 1800 UTC,

the first forecast hour considered, a broken line of

storms stretched from the middle Mississippi valley,

through southeastern Kansas, into central Oklahoma.

The storms at the southern end of the line near the

borders of Oklahoma, Kansas, Arkansas, and Missouri

maintained the strongest intensities. It should be noted

that the northern part of the line in Illinois weakened

after 0200 UTC 31May and the storms south of the line

redeveloped in central Arkansas at the same time.

The hourly forecasts and corresponding observations

of 18-dBZ echo-top heights for this case are shown in

Fig. 7. According to the observations, a strong pre-

viously developed squall line with high echo-top heights

FIG. 8. Using the 20-km-radius NE method from EXT (black line), HRRR (blue line), Lin CD (green line), and

Sal CD (red line) for forecasts over 24 days frommid-May to mid-June 2013, results of (a) POD, (b) FAR, (c) bias,

and (d) ETS.
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from the middle Mississippi valley to central Oklahoma

moved to the east. The EXT captures the movements of

cells present at the starting time properly, but does not

show the redevelopment of the strong storm cells in

central Arkansas. HRRR depicts the features of the

squall line throughout the forecast but the location is

displaced and intensities are lower compared to the

observations and EXT. However, HRRR shows re-

developing storm cells in southwestern Arkansas (lo-

cated in central Arkansas in the observations). Because

of lower intensities and displacements in HRRR, Lin

CD and Sal CD do not show better performance com-

pared to the EXT at 4–8 h in this particular case. How-

ever, Sal CD shows the best results up to 3h by capturing

the features from EXT and HRRR. The poor perfor-

mance of Sal CD at later hours reflects the strong de-

pendence on the HRRR forecast at these hours. Thus, if

the HRRR forecasts are poor, the Sal CD forecasts will

also be poor.

c. Statistical evaluation

Values of POD, FAR, bias, and ETS computed from

contingency table elements defined using a 20-km radius

for EXT (black line), HRRR (blue line), Lin CD (green

line), and Sal CD (red line) computed at each forecast

hour over the 24 cases are shown in Fig. 8. The skill of

EXT quickly drops with increasing forecast lead time

and EXT performs better than HRRR until 3 h. HRRR

skill scores drop slightly with increasing lead time, but in

general remain more constant than the other forecasts.

Lin CD generally performs worse than EXT andHRRR

from 3 to 6 h, while Sal CD performs best overall with

respect to PODandETS. It should be noted that Lin CD

has very low bias (,0.3) especially from 4 to 6 h (i.e.,

underestimation). Sal CD performs particularly well

relative to the other forecasts during the 2–5-h lead

times. The largest differences in ETS and POD between

Sal CD and the other forecasts coincides within the time

that ETS and POD from EXT and HRRR cross, which

indicates that, instead of utilizing EXT and HRRR in-

dividually, combining those data can improve the

forecast.

Skill scores of POD, FAR, bias, and ETS using the

RO-seg method averaged over the 24 days are shown in

Fig. 9. The skill scores are similar to that of the NE

method; however, the ETS of Sal CD converges to that

of HRRR at 4 h (it converged at 5 h for the NEmethod).

The ETS of HRRR using the RO-seg method shows

better results than the NEmethod from 3 to 8 h, which is

likely related to the RO-seg method considering a more

restricted area compared to the NE method.

Because bias can impact comparisons of ETS by

sometimes giving the forecast with a higher bias an

artificially inflated score, a bias correction procedure is

applied following methods similar to those in Jenkner

et al. (2008) and Clark et al. (2011). The corrections are

only applied to EXT, HRRR, and Sal CD. Lin CD is

excluded from bias correction because at some forecast

FIG. 9. As in Fig. 8, but for the 10-km route-based segments method.
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hours, especially the 3–6-h range, biases were as low as

0.25 (Fig. 8c) and correcting for the bias would have

resulted in a drastically different appearing forecast.

Biases for Sal CD, EXT, and HRRR were all clustered

around 1; thus, the bias correction only results in aminor

adjustment to the forecasts that serves to make the ETS

comparisons more equitable.

The bias correction is applied by finding the average

bias of Sal CD, EXT, and HRRR at each forecast hour.

Then, using the distribution of 18-dBZ echo-top

heights, a new threshold that gives the average bias is

computed. The new thresholds are slightly different

among the three sets of forecasts, but have the same

areal coverage and, thus, the ETSs computed from these

new thresholds are not impacted by differences in bias.

The bias-corrected comparisons are shown in Fig. 10.

d. Statistical significance

Using the methodology of Hamill (1999), distribu-

tions of differences in resampled ETS at each forecast

time are calculated and the range between the 2.5th and

97.5th percentiles of these distributions is used to illus-

trate statistically significant differences. Those ranges

are represented as error bars in Fig. 11. If the compared

forecasts are outside of the range of error bars, the im-

provement is significant.

In the comparisons between Sal CD and EXT

(Figs. 11a,b), the Sal CD scores are significantly better

FIG. 10. (a) Adjusted bias computed using the 20-km-radius NEmethod of EXT (black line), HRRR (blue line),

and Sal CD (red line) for forecasts over 24 days from mid-May to mid-June 2013. (b) As in (a), but for the RO-seg

method. (c) Bias-adjusted ETS using the NE method. (d) As in (c), but for the RO-seg method. (e) Percentiles of

EXT,HRRR, and Sal CD to correct bias based on areal coverage of 9-km observations using theNEmethod. (f) As

in (e), but for the RO-seg method.
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than those for EXT at all forecast hours. In the Sal CD

and HRRR comparisons (Figs. 11c,d), Sal CD has sig-

nificantly better scores up until forecast hour 4 using

the NE method and until forecast hour 3 using the RO-

seg method, after which the scores begin to converge.

Finally, for the Sal CD and Lin CD comparisons

(Figs. 11e,f), Lin CD is significantly better at forecast

hour 1 for both the NE and RO-seg methods, while Sal

CD is significantly better at forecast hours 3–7 using

both methods.

4. Summary and future work

a. Summary

A new technique to blend extrapolation and model

forecasts was developed and evaluated using observa-

tions and forecasts over 24 days from mid-May to mid-

June 2013. In general, blending techniques using

weighted averaging apply constant weights for both

extrapolation (w) and model forecasts (12w) at each

forecast lead time. For example, w5 1 is applied to the

extrapolation and 12w5 0 is applied to the model

forecast at the beginning of the forecast andw decreases

gradually to w 5 0 at the end of the forecast. The

weighted averaging (linear cross dissolve) has a problem

producing underestimated blended values during the

middle of the forecast, where both w and 12w are close

to 0.5 if the forecasts are displaced. To mitigate this

problem, themodel forecast and extrapolation fields can

be aligned before weights are applied; however, dis-

placements remain even after this alignment. To further

improve the blending results, a technique called salient

cross dissolve is applied in this work. Two-dimensional

weightsws based on the differences between normalized

intensities from the extrapolation and model forecast

are determined for each forecast hour (as a function of

time fraction w). The novelty of salient cross dissolve is

FIG. 11. (a) Bias-adjusted ETS computed using the 20-km-radius NEmethod of EXT (black line) and Sal CD (red

line) with error bars showing the 2.5th and 97.5th percentiles of differences (10 000 resamples) between ETS com-

puted with Sal CD and with EXT. (b) As in (a), but for differences fromEXTwhen using the RO-seg method. (c) As

in (a), but for differences when using HRRR. (d) As in (b), but for differences from EXT when using HRRR. (e) As

in (a), but for differences fromETS (not bias-adjusted ETS) computed from Lin CD. (f) As in (e), but for differences

from Lin CD using the RO-seg method.

OCTOBER 2015 HWANG ET AL . 1215

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:16 PM UTC



in preserving the values in both the extrapolation and

model forecasts if they are high enough. For example, if

there are two convective cells in both extrapolation and

model forecasts in the middle of forecast lead time, sa-

lient cross dissolve tends to shrink the cells by applying

different weights (i.e., higher weights are applied to

higher values and lower weights are applied to lower

values, which preserves most of the high-valued pixels

and eliminates many of the low-valued pixels) while

linear cross dissolve cuts every value in half. Salient

cross dissolve showed better results than those of

linear cross dissolve in this study. Instead of fading out in

linear cross dissolve, ws enables the pixels with strong

intensities to be preserved in salient cross dissolve, re-

sulting in more pixels with higher values.

For the forecast evaluations, a new method called the

route-based segments method, which considers airplane

routes, was developed and tested with comparisons

made to a neighborhood-based method. Both methods

gave very similar results indicating superior perfor-

mance for the forecasts using salient cross dissolve,

particularly during forecast hours 2–5 h.

b. Future work

The contribution of the work is adding additional in-

formation to the weights applied to the extrapolations

and the model forecasts. Considering differences of

normalized intensities showed promising results and

helped give more realistic intensities in blended fore-

casts. Instead of adjusting values in model forecasts

based on linear weights that vary as a function of time,

salient cross dissolve also considers intensities so that

pixels with high values are retained. However, updated

weights (i:e:, ws) do not reflect actual data from the

extrapolation normodel forecasts. Future studies should

consider the processes of adjusting those weights con-

sidering the real data and past performance. Addition-

ally, frequently updating extrapolation, in other words,

adding latest observational information at 15-min time

intervals, should be utilized. Finally, it is also possible to

consider weights as two separate variables instead of

using ws and 12ws. The independent variables can be

adjusted using machine learning. Updated techniques

using such methods are planned for future applications.
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